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1. Let us consider the family of algebraic equations
Pz, a)z=g" a4 an=0, zEK; (a..,0)ED (1.1)

for a fixed n ; Kk 1s the complex plane, D 1s the real, euclidean space.
A number of stability and automatic control problems involve, as is well-
known, the study of the properties of the roots of Equation (1.1) as de-
pendent on its coefficients {considered as parameters).

In this paper we study a certain class ( of such propertiles.

Let us assume that the conditions for their preservation may be expressed
through the conditlons of invariance of a finite number of differentiable
relatlions between x = Re z and y = Im z relative to a certain Lie group
¢ of transformations of the fleld x into itself. Thus, the preservation
of the Hurwitz condltions 1s ensured by the condition for the invarilance of
Equation x = O wunder all transformations in some group Gl'(the transfor-
mations in @,° leave the imaginary axis of the z-plane fixed}; the con-
dition that the reality of the roots be not violated is ensured the condition
for the Invariance of the equation y = O under all transformations in some
{other) group @, (the transformations in @§,” leave the real axls fixed);
the condition for the preservation of a (finite) number of roots of any
equation will be fulfilled if the g-plane 1s subjected to transformations
from any {locally) continuous group of transformatlons, etc.

An example of a property not belonging to class ( 1s a property that
the root of the eqguation 1s expressed rationally or in radicals in terms of
the coefficient g .

The points of space D for which a given property wc=f{) 1s satisfiled
will be called w-equivalent, and the whole set of such points, the w-equi-
valent reglon.

The aim of this paper is to determine the boundaries of equivalence
region. Certain related questions are also considered.

a72
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The paper is based on the following idea.

Together with a certaln group ¢ of transformations of field x into
itself, let there exist a group @, , isomorphic to it, of transformations
of space D into itself (so that the transformations in ¢ are independent
of a , while the transformations in @, are independent of =z ); moreover,
¢ and @, are such that the transformations in the extended group ¢ + G,
preserve Equetion (1.1). Then, to every relation in K which is invariant
relative to ¢ there corresponds a certain relation (one, or several) inp
which is invariant relative to (@, , and between the corresponding systems
of intransitivity in k¥ and D there 1s established a one-to-one corre-
spondence,

This fact also holds for any pair of isomorphic subgroupsG’ < G,/,G T G,
G,/ C G If group ¢ 1s infinite and w=Q, then we can find a subgroup
G 'C G, preserving this property and a subgroup GQ'C: G, 1somorphic to it.

Group ¢ 1s said to be fundamental.

By what has been asserted above, w 18 realized if and only if the
w-equivalence region coincldes with the strictly defined systems of intransi-
tivity of grouwp @,’. If group G, 1is transitive, then the determination
of the desired boundaries reduces to the finding of particular invariant
manifolds in @,’ . The latter can be done by standard algebraic ways, The
alm of the paper is attained by indicating the base of the Lie algebra which
allows us to solve in closed form certain problems of finding invarient mani-
folds in ¢, . By transitivity 1is always to be understood local transitivity
at polats of common location.

Within the framework of Lie algebras let us consider infinitesimal oper-
ators. We assume that it 1s possible to extend certain facts in the theory
of finite Lle groups, used in this paper [1 and 2], to infinite groups. In
particular, the fact that there exists a group corresponding to an infinite
algebra. For simplicity, all the functions we shall encounter are assumed
to be analytic (it suffices to consider them to be trice differentiable [1]).
The dummy indices are summed everywhere, unless specified to the contrary.

Quantitlies ralsed to powers are placed within paranthesis.

2. Let us consider the equation
f(z, @) = 0, z&K, a = (a3,..., an)ED 2.1

where it is known that the number of solutions it has equals the number of

parameters & for any a&J]). Let i',...,\* be the roots of Equation
(2.1).

In accordance with generally applicable definitions, the parameters a
are sald to enter into the expressions for the A! in an essentlal wav 4f

; i (A a) - 2.9
i T ’ — .

detff]R0, f'="G= @it 22

for the point ac=D of common location. Otherwise, there exists at least
one system of functions

t@,...," @ (2.3)
not all of which are identically zero, such that the identity
. i
g](a)af(xva):() (i=1,---,n)

6aj
holds.
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Lemma 2.1 . If all the parameters of Equation (2.1) are esseatial,
then there exist an infinite group ¢ of transformations of ¥ 1nto itself
and a group (¢, 1somorphic to it of transformations of ) into itself, such
that the extended group ¢ + G, preserves Equation (2.1); group G, is
transitive, while group ¢ 1is multiply transitive any number of times.

Proof . Let us denote by
9 . 0 .
Z; =8 3 A= (@ 5,7 X,=2,+ 4, (i=1,...n)
i

respectively, the infinitesimal operators in groups ¢, ¢, and ¢+ &, . In
order to obtain the infinite Lie algebra @ of group ¢, obviously, it 1is
sufficient to choose as g,(g) any base in a space of sufficlently wide
class of functions. Let such a base be chosen in the class of analytic
functions. Because of the llnear independence of the functions gi(z), for
every finlte k% the rank of the matrix

By () .. (W)
B (u) ... Ey (1)

equals % , whence follows the jx-fold transltivity of group ¢
The components C_J(a) are deflned by the equalities

] 6f( va) af(zv (1) _ il, ]':1,..., n .
g”]l(a)—a‘%JrE’”(Z)T =0 (mZO, 1, ... ) @4

z=)\i(a)

where \t= \'(ag) are the solutions of (2.1). Because of (2.2) there also
exist unique functions f*f satisfying the equations

fy*? =:6? (6? — Kronecker symbol)
Solving (2.4%) we obtain uniquely
n
j j of (Zv a)
th@=— 3| 0

i=1

] (2.5)
2=k
Because f(z,a) = O, it follows from (2.4) that

Xy f(z,0) =0 (2.6)
If X,f(z, 0) = 0 and Xpf(z,a) = 0 by virtue of f (z, a)=0, then

(elXa -+ erﬁ) f(z: a) =0
and 1t is also easy to show that

(Xo» Xg) f(z,0) =0 2.7

because of the same relations.

Indeed, if (2.6) is valid, then we can find a function uf{z,q) and an
integer g such that

Then Xf(z,9) = p(z a) [f(z, P

(Xgo Xp) [ =155 — 34) uauﬁfs‘ﬁsﬁ—l + fPXabtp — [ X phe

which, for sufficiently general constraints on up(z,a) , a2lso proves (2.7).
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Consequently, the operators . do indeed generate the Lie algebra @+@,.
From the uniqueness of solution (2.5) we can conclude that the algebras §
and @, are isomorphic. Relations (2.6) show that the transformations in
the group ¢ + ¢. preserve Equation (2.1). TFrom (2.5) we get

(28)

det £ a9 1] Mi £0  (m=my,...,m)
Y=1

det | Zm (a) | = — det || f*I] 9z Y (@)

for any point ¢ &€.D of common locatlon, since (2.2) holds, group ¢ 1is
multiply transitive and at the point a of common location Equation (2.1%
cannot have multiple roots (and hence 3f/3z # O when 2z = 21Y). From (2.8)
the transitivity of group ¢, follows. emma 2.1 1s proved.

Lemma 2.1 1s easily generalized to the case of a system of equations.

Let us note without proof the validity of a somewhat more general as-
sertion: 1f Equation (2.1) contains p > n parameters of which »n are
essentlal, then there exlsts an infinite group ¢ of transformations of ¥
into itself, and 1ts homomorphic inverse image, the group ¢, of transfor-
mations of D 1nto itself; these groups are such that the extended group
¢ + ¢, preserves Equation (2.1), and, moreover, group ¢ 1is multiply tran-
sltive any number of times, while group ¢, is intransitive and admits of
precisely p — n absolute invarilants,

To the kernel of homomorphism # there corresponds the ldeal & in alge-
bra @, generated by p — n operators with components (2.3), and, according
to a well-known Theorem in [1], (see p.22) the group ¢ 1s isomorphic with
the factor group @./H .

Since Lemma 1 is valid for any choice of infinite algebra @ then for a
given choice of @ 1t remains valid also for every infinite subalgebra
G’ C G and, consequently, there corresponds to 1t the finite subgroup
G’ C G if such exist.

Let us sharpen the definition given in Section 1 of the class (Q of the
properties being investigated of the roots of Equation (2.1). Let us con-
sider all possible systems of curves in the z-plane

@;(z, ) =0 (i=1,....0 (2.9)

Let one of these systems be such that there exists such an infinite col-~
lection of mutually conjugate harmonic functions E(x,y), n(x,y) that by
virtue of &, =0

o, I,
YO, = § (z, y)WJrn(z, !/)WZO (2.10)

The class Q consists of the properties of the roots of Equation (2.1)
which preserve their distribution between regions of the z-plane bounded by
any system of curves (2.9), including distribution between the curves them-
selves and thelr arcs*.

* Translator's Note: There would be many possible translatlons depending
on which inflection was incorrect. It 1s hoped the intended interpretation
is given here.
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In Section 3 it will be proved that class 0 1s not empty.

From thls definition i1t automatically follows.that if ® &S, then there
exists an infinite subgroup G’ (C G preserving property

In a certaln sence the properties in class Q are "locatlonal propertiesT
It 1is easy to imagine, however, properties of @ more complex nature which
are of interest in application. These are properties which are expressed
in the form of certain relations between the real and imaginary parts of the
roots of the eqguation. PFor example, such a property is that of the speci-
fied alternations of real and pairs of complex-conjugate roots. In this
case the transformations 1n group ¢ themselves should be dependent on the
location of the roots in the z-plane, i.e. on ¢ ,

In the considered example let x, + {y,, x; — iy and x, be some roots
of Equation (2.1). Let us introduce the notationsyy = 21 — x2, VP2 = Ref(z, a),
¥z = Imf(z, a).

Transformations of the z-plane will not disturb the nature of the root
alternations if we require the fulfiliment of the condition F¥{§, = O by
virtue of {§, = ¢, = ¢35 = 0 .

This requirement isolates from ¢ an infinite subgroup which preserves
root alternatlons. It is not difficult to construct this subgroup.

Lemma 2.2 . If a certain property ® & Q of the roots of Equation
{2.1) is satisfied at a given fixed point a°, then it 1s also satisfied in
the whole intransitivity region M = a° of the subgroup Gi° (T G, preserving

w

Proof . From (2.2) there follcws a one-to-one correspondence between
At and @ ., Because of {2.4)this correspondence 1s preserved also for
A e xt, a’~ g, obtained from A' and g by means of all possible trans-
formations in the group ¢ + ¢, . Therefore, if 1t should turn cut that
there exlsts a point gl ¢ M for which the corresponding X' do not possess
property w , then thils would show that the tratsformations in group ¢’ do
not preserve w , which contradicts the hypothesls.

From Lemmas 2.1 and 2.2 and from the method of obtaining the equations of
singular invariant manifolds of gransitive groups, there follows a theorem.

Theorem 2.1 . The w-equlvalence regions (@ &= Q) coincide with
the intransitivity systems in ¢, , preserving w , which are n-dimensional
and which are decomposable by hypersurfaces on which vanish all the n-th
order minors of the vector matrix [I€,?(a)l| of group &, .

3. Let us consider the question of choosing § and of the computation
of the algebra @, based on the cholce.

Equation (1.1) satisfles the condition of Lemma 2.1. Let us find the
algebra @ + @, for 1t, Let us write ¢ 1n the form

Im=1" (m=0,1,2%..) (3.1)

The operators (3.1) indeed generate the algebra since

(Zm, Z)) = (1 — m) Zjm

The components (.’ (a) of the operators in algebra @, are found in the
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following way. In order that Equation (1.1) admit of group ¢ + ¢, 1t is
sufficient that for every integer m there 1s found a polynomial of degree

m-1 mey
. PR A .
Py (2, 80) = 2 omoyz?
yazs()
such that the ccndition
ap N ap
XPy = 2" —2 + L (a) aa: = PP (3.2)

is 3dentically fulrilled with respect to 2 and g .

By substituting the left-hand side of Equation (1.1) into (3.2), we get

n+m-1 fn-1 f+m-1
z (k - m + 1) e’n-bmnh—lzh + Z Cmﬂ’h (a) = Z ( 2 %—kam—v-l) z*
h=m h=0 h=p ktv=h

Hence by equating to zero the alternate coefficlents for various powers
of 2z , we find

when m <L n — 4

b @) = D) GnekOmevey O<A<m—1)
ktv=h

Cmn—h (a) = 2 ApgOmv—yg — (B —m + 1) Gnymny m<<hn—1)
K+v==h

0= 2 tastmoy— (bt —m+Danmns (<h<ntm—1)
k+v=h

when M >n

";mﬂ_h (a) = Z An_ym—v-g O<hsn—1)
Ktv=h
0= D} Gni%mvy (n<h<m—1)
ktoamh

0= E Ak Am—y-1 — (h —m+ 1) Apym-h-1 m<hn+m—1)

iy =

It 1is not difficult to verify that for arbitrary m the corresponding
systems give unique solutions for ¢.' (@) 1n the form of polynomials in g.

The very same result 1s obtained by considering the Viet formula
=g+ M. FAN=0,., 0 = (— )AL
and by taking into account that because @y = @y = . .. =@ = 0
Xiq},' =0

Thus, becauseq, = ... = @ = 0 we get
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@+ )"+ ...+ A" =0
G (@) + (=)™ Y™ . A L AL ()™ =0
The collection of terms on the left-hand sides, depending on !, by

virtue of the theorem of symmetric polynomlals, rationally 1s expressed in
terms of baslc symmetrlc polynomials, i.e. in terms of a,,...,a,

Actually, it 1s not necessary to compute the functions Cf(a) by the
cited formulas for large values of m ; besides the operators 4,, 4,, 4,
corresponding to the bilinear group of transformations of z , 1t suffices
only to find 4, . After thls, the remaining operators 4 may be computed
by using the commutatlons of 4, with 4, (m = 2,3,...). The components of
Aa may be determined from Formulas

t@= 3 a8 ,—(r—j—2ay,; @A<j<n—3)

kvFi=n
B@= 3 any, (n—2<j<n)
ktvtj=n
(@g = a,2 — 2a5, 0 = — ay, 0y == n)

In many cases it 1is convenlent to pass from the varlables a,,...,2  to
the equivalent system of variables

n
o
Sk = >_;(?»1)k k=1, ...,n)
i=1
by use of Newton's recurrence formulas. Then, instead of algebra @, we
obtain the algebra @, isomorphic to 1t
n

ka (S) — 2 k (;\’i)k—l (L‘l)m — 2 k (}"‘I'.)k-f-m—l: ksk+m—1 (3.3)
i=1 i=1
The elements of algebra § + §, take the form
2 e i
X = 2™ —= El ESkima T (3.4)

By using the base of § we can construct svbalgebras which are useful
when considering certain transcendental equations satisfying the conditlon
of Lemma 2.1. The base

cos mz sin mz (m=20,1,...) (3.9)

oz ? bz

can be formally obtained from (3.1) by the summations
o] co 1
i . . g N S 7
cosmz = Z (_‘1)k (fk)' §2k (mz)1 sinmz = kzlo (— 1) Ck—1)! E’?k‘l (m ’)
k=0 =

or by passing to a new variable In the old base. In particular, in the same
way we can obtain also the base

0 (3.6)
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The application of bases (3.5} and (3.6) to Equation {1.1) leads to tran-
scendental expresslons for the components §J{a) of algebra @,

The base (3.6) can be used when studying Equation
n
2 an_vg"l == 0, ay = 1
v=0

for obtaining the (,{a) in the form of polynomials in ¢ . However, the
written equation does not essentially differ from Equation {(1.1) and can be
obtained from it by passing to the ofner variable gz -~ e¢*, in the same way
that the algebra of the exponential equation 1s cobtained from the algebra
of Equation (1.1).

Of great interest is the direct determination of algebra @, from (3.5)
for the trigonometrical equation

f(z, 8) = ay+ D) (a,cosvz + b,sinvz) = 0 (B2452=1)  (3.7)

v=1

By requiring the fulfillment of (3.2), where it should be assumed that

P,=f, Em (2) = sinmz, Py =ay+ D) (@, cospz + B, sinpz)

p=1
we get m+n m-n
%{ D (@ — m) ay_mcos 0z — > (m— o) amwcos oz +
W=l W=m~]1
m+n m-n
+ z, (0 — m)by_msin 0z — 2 (m — ®) by sin mz] +
[AESES ) n o=m-1
+ &, (a, b) + Z {Cam (@, b) cos ©z + Lom (@, b) sin wz} =
w=]1
= ay8y+ @, ) (% cos @z + B, sin 0z) + a, 2 (2,608 02 + by sin @z) +
(20§ w=}
m+rn
+1 2 2 Uew,—b,) cosoz+ (b, + aB,)sin ezl +
W= Y pe=n
n-1

+1 2 2 e ap+ bB,) cosez+ (bB,~—a,,) sin ozl

]t V=00

Hence, by equating to zero alternate coefficients of cos we and sinugg,
we obtain a unlque solution in the form of polynomials in ¢ and » for
the functions ¢,} and (,} generating the algebra

. a j i
Sz g+ Lo (40 8) g U (0, 0) -

The computations for €_{z) = cos mz are done analogously. The number
of roots of Equations {3.7) 1s (denumerably) infinite, but we can satisfy
the condition of Lemma 2.1 if we mutually identify all the roots of this
equation having equal imaginary parts and having real parts differing by
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multiples of 2n .

For the system of algebraic equations
i
P, (2 ...,75a) =0 (i=1,...,k
z
1 k
the generators &m (2%, ..., 2%); ... ; Em (2% .. ., 2%) of algebra @ can be

taken as monomials of degree 5 in the variables 2',...,2%, Then, the
generators {,a) of algebra @, will be polynomials in &, ,.,,q} .

As can be seen from what has been presented, the form of algebra @, es-
sentially depends on the cholce of algebra @

It is natural to take advantage of the arbitrariness in the choice of @
so that the expressions for the components ¢ '(a) of algebra @, obtained,
would have as simple as.possible form (although the reduction of these components
to polynomials is not always possible).

The second essential requirement on @ 1is the possibility of deriving
from @ an infinite subalgebra preserving the properties under study of the
roots of Equation (2.1) (in particular, of (1.1)).

4, Let us make use of the algebra
a fij
= gm__
Em (Z) dz z az
consldered in Section 3 for the study of certain properties of the roots of
Equation (1.1).

Group (3.1) realizes the following representation in the plane 2z = x4+ 1y.
Let 1 be the canonic parameter of any one-parameter subgroup of ¢ . Then,
from the Lie eguation 3z2/ar = z’* follows

ox’ , 3y ‘m . ’
—_ [, - | m
e + 1 o Rezmt-{Imz
By eguating the real and imaginary parts in this equation we get the
algebra of the desired representation

o

b, ) g+ M, @0 g Em(@my)=Rezm, (1) =Ima
In polar coordinates p,o (z = pei@},
N, (0 ) ;%+ Nom (O @)% (m=0,1,...) (4.1)
Npm 02 @) = p™c0s (m — 1) g, Nem (05 @) = p™1sin (m — 1)@

Let us use the explicit expressions for npnl and n@m to separate out
that infinite subgroup which preserves all of the properties of the roots
of Equation (1.1) considered beldw.

a) Realility of the roots . The number of real roots
of Equation (1.1) remains fixed under all transformations in a certain group
G’ (— G 1if they preserve the equation ¢ = O . Consequently, the Lie alge-
bra of group @’ 1s generated by those operators (4.1) for which the con-
dition
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Ay 99
is satisfied by virtue of o = 0 .

But this is satisfied identically for all integers m sSo that ¢’ co-
incides witn the fundamental group &' =G .

According to Theorem 2.1, to obtain the equation of the hypersurface
bounding the region in which the number of real roots is constant, it is
necessary to find the greatest divisor of all the n~th order minors of the
matrix ¢, (e} .

According to (3.4%) this matrix has the form

So 251 ns,
51 253 ns,,
Spe1 25, . RSy 4

..........

Let us restrict our attention to the upper minor. At any rate, 1t con-
tains as a factor the desired greatest divisor

8o 81 « v Sn—l
$1 Sz . . . Sy — O ( 4' 2)
.‘)‘ﬂ__1 S, . Szn—-l

The Hankel determinant on the left-hand side of (4¥.2) will be an irreducl-
ble polynomial and will colncide with the resultant of the system of equa-

tions aP_(z,
Paz,)=0, mf_g

In space D the hypersurface (4.2) bounds a certain multicavity region.
Each cavity is an equivalence region relative to the number of real roots.
To separate out those cavities which correspond to glven numbers of real
roots, it is necessary to have additional conditions. Such a condition, for
the case when all the roots are real, 1s the positiveness of all the diagonal
minors of determinant {(4.2), as is well-known. To obtain these conditions
{if a priori knowledge of them is not assumed) 1t 18 necessary to study the
geometry of manifold {(4..) and, for any point representative of each cavity,
to establish to what number of real roots it corresponds.

b) Stability of the roots . The Hurwitz conditions
will not be violated if the g-plane is subjected to a1l possible transfor-
mations which leave the imaginary axis fixed. The corresponding Lie alge-
bra is generated by those of operators (4.1) for which condition
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N 05 fp);a%+ nm(p,w)-g%z‘)
is satisfled by virtue of the equality ¢ - 4 = 0.
Therefore, we should have
N 0> Vo) = p™sin [Yym — Nl =00 m=2%k+1(k=01,..)

Thus, the desired subalgebra @‘ is generated by the system of operators
{3.1) with an odd index =m . The matrix of subalgebra @, has the form

EN 253 o . . nms,
53 258 « . . ms,,
San-1 289 - - - 2

O . .

It can be verified that the upper minor of the matrix is decomposable
into the factors

81 S5 . .. 8y So S1. . 8 aa 1 0...0
3 S1 Sppp || S s2 .. .8, ag az 1. . .0
San-1  Sam c o+ * Sgnoy Spq Spo e« Sang 0 0 0...4a,

The second of these factors will be the Hurwitz determinant of the highest
order and in turn 1t is decomposable into two irreducible factors. In certain
cases thelr structure allows us to find the Hurwltz conditlons themselves in
& simple manner.

As an example let us consider the case of n = 4. By a test carriled out
for some fixed values of the roots located in the left-hand halfplane, we
establish

a 1 O
a3l ag gy ay | >0
10 g a4

Consequently, both factors on the left-hand slde of this inequality can-
not change sign. A test of the signs of these factors, carrled out for the
same values of the roots, shows that both factors are positive. But

a 1 0 ‘
_ ay 1 2 lay 1
0<lay as ap = a4 T a3 " or as ’ > a2 >0
as ag ay ag
0 ap ay

A repetition of the test shcws that we should have

@y i
4 a >0, a;3>0, @z >a3 >0, ¢;>0, ap>0
g @3
Such a method is applicable for any n . However, the completeness and

the independence of the system of inequalities thus obtained should be
checked each time. The last remark also relates to the case of the study
of other w by this method; in particular, it relates to the obtaining of
various modifications and generalizations of the Hurwitz criterlon.
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c) Location of the roots within the

angle—un o< Yyum, Here ¢ 1s a rational fraction, O < u< 1.
Such a location of the roots is not viclated by transformations which leave
the palr of straight lines g = gur f{ixed.

It is easy verified that the corresponding Lie subalgebra conslsts of the
operators {4.1) for which m = 2x/u + 1 (k/u 1s an integer).

The cases u = 0 and yu = 1 have already been considered 1n Subsections
{a) and (b).

d) Location of the roots 1in the seg-~
ment [ 0,1] of the &real a x 1 s . This property of the
roots 1s not violated by transformations which leave the real axls and the

points x =0 and x =1, fixed. The subalgebra §#' 1u generated by the
operators

a
Mz — _— = .
(z—1); (m=1,2,...)
The matix of algebra @,’ has the form

285 ~- 81 3sg 282 . . .(n+1)8n+1

Jsg = 253 bdsg—3s3. . (a2, — (415,
45y — 3s3 585 — 4sg . . .(n+3)sn+3—-(n+2)

D

_ nsn

...........

Sntg

e) Alternation of the real roots of
the pair o f Equations

P.(z,a)=0, P,(z2,b6)=0

It is obvious that the nature of the alternation of the real roots of
these equations is in no way disturbed by transformations in the fundamental
group (¢ . When the equatlons are of equal degree, the group of transfor=-
mations of parameters g, » will be the doubled group 4§, + &,

For example, for a pair of guadratlic equations the matrix of this group
has the form

2 ay 2 b1

ay 3 2(13 b1 2bg

2&3 —— al"* — a3y 2bg —_ b;z _— blbg
dls — 381@3 alzag e 2&32 bls — 36}})3 6121)2 —_— Zbga

......... 4 v 4 e & & w s & s s & * 2 s e 2 e =

£, Locati®n of the roots inside a hori-
zontsal or verticel strip in the 2 -plane.
In the xy-plane the algebra (3.5)-realizes a group with the operators

2 . . a
€08 M LMy —-— — Sin MTaimh MY -% , sin mzeoshmny -% + cos mzsinhmy v
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and algebra {3.6), a group with the operators

em*cos my —— + em*sin my —— 8

Hence 1t is seen that the transformations in the groups c¢orresponding to
these algebras leave fixed, respectively, the vertical strip —% 6; z<€;3t
and the horizontal strip — X < ¥ <{ f. The components ¢{,’{(e), in this
case, are obtained as entire transcendental functions; exXpansions in power
series in the parameter ¢ may be written out for them.

g) Sign-definiteness of gquadratilic forms.
Let us consider the quadratic form
D = g2’ o, ai;; = aj (i, i=1...,n)
It is obvious that transformations in the lilnear group
xi = a{lixil’ det “ai‘i"=#0 (ilzi,..., n)
cannot change the parity of the form & .

The finite algebra @, obtained in this case has a matrix with the elements
(B, / 00), i_y; = @b + andit
The minors of this matrix (1its rank equals #n(n+1)) have the determinant
det|la,, || as the greatest common divisor.

The equation detja,, || = O defines an irreducible manifold which 1s a
bounded equivalence region relative to the parity of form ¢ . The Sylvester
conditions, in particular, separate out in 7 the equlvalence regions rela-
tive to the property of sign-definiteness of form § .

N ot e . The results of Sections 2 to 4 can be extended to the case of
complex parameters. 1f ¢ —-gé¢ then the transformations of parameters &,
are effected by a group &, with the operators

(Re g, (a) cos @ + Im LI, (a) sin ) 73; + T (Im ¢, (a) cos ¢ — Re th, (@) sing) 3o a@
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