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1. Let us consider the family of algebraic equations 

~J~, Cl) - Z’L + -nlz”--l -;- . . . -;- a,, = 0, z (?z K; (0 1 ***, a,) E D 61) 

for a fixed n ; K is the complex plane, D is the real, euclldean space. 

A number of stability and automatic control problems involve, as is well- 

known, the study of the properties of the roots of Equation (1.1) as de- 

pendent on its coefficients (considered as parameters). 

In this paper we study a certain class n of such properties. 

Let US assume that the conditions for their preservation may be expressed 
through the conditions of Invariance of a finite number of differentiable 
relations between x = Re s and I/ = Im s relative to a certain Lie group 
G of transformations of the field K into itself. Thus, the preservation 
of the Hurwltz conditions is ensured by the condition for the invariance of 
Equation x = 0 under all tr~sformations in some group G1’ (the transfor- 
mationS in G1’ leave the Imaginary axis of the s-plane fixed); the con- 
dition that the reality of the roots be not violated is ensured the condition 
for the invariance of the equation y = 0 under all transformations in some 
(other) group Gp’ (the transformations in Gp’ leave the real axis fixed); 
the condition for the preservation of a (finite) number of roots of any 
equation will be fulfilled If the i-plane is subjected to transformations 
from any (locally) continuous group of transformations, etc. 

An example of a property not belonging to class n is a property that 
the root of the equation Is expressed rationally or in radicals in terms of 
the coefficient s . 

The points of space D for which a given property WEQ is satisfied 

will be called w-equivalent, and the whole set of such points, the w-equi- 

valent region. 

The aim of this paper is to determine the boundaries of equivalence 

region. Certain related questions are also considered. 
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The paper Is based on the following Idea. 

Together with a certain group c of transformations of field K Into 
Itself, let there exist a group 6. Isomorphic to It, of transformations 
of space D Into Itself (so that thi transformations In G are Independent 
of a , while the transformations In 0. are Independent of z ); moreover, 
G and 0. are such that the transformations in the extended group G + 0. 
preserve Fiqurtlon (1.1). Then, to every relation In K which Is Invariant 
relative to G there corresponds a certain relation (one, or several) 1nD 
which Is Invariant relative to 0. , and between the corresponding systems 
of lntransltlvlty In K and D there Is established a one-to-one corre- 
spondence, 

This fact also holds for any pair of Isomorphic subgroupsG'- Gi,G C G, 
Gi C G. If group G Is Infinite and UEQ, then we can find a subgroup 
G"CG, preserving this property and a subgroup G,' C G, Isomorphic to It. 

Group G Is said to be fundamental. 

By what has been asserted above, UJ Is realized If and only If the 
w-equivalence region coincides with the strictly defined systems of lntransl- 
tiVity of group G_'. If group C,' Is transitive, then the determination 
of the desired boundaries reduces to the finding of particular Invariant 
manlfblds ln 0.' . The latter can he done by standard algebraic ways. The 
aim of the paper Is attained by Indicating the base of the Lie algebra which 
allows us to solve In closed form certain problems of finding lnvarlent manl- 
folds In (7.' . By transitivity Is always to be understood local transitivity 
at polilts of common locgtlon. 

Within the fl'amework of Lie algebras let us consider lnflnlteslmal oper- 

ators. We assume that It Is possible to extend certain facts In the theory 

of finite Lie groups, used In this paper [l and 23, to Infinite groups. In 

particular, the fact that there exists a group corresponding to an Infinite 

algebra. For slmpllclty, all the functions we shall encounter are assumed 

to be analytic (It suffices to consider them to be trlce differentiable [l]). 

The dummy Indices are summed everywhere, unless specified to the contrary. 

Quantities raised to powers are placed within paranthesls. 

2. Let us consider the equation 

f(Z, a) = 0, EK, a = (al,..., &)ED (2.1) 

where It Is known that the number of soluflons It has equals the number of 

parameters a for any NZD. Let X1 ,...,A' be the roots of Equation 

(2.1). 

In accordance with generally applicable definitions, the parameters a 

are said to enter Into the expressions for the XL In an essential wav 3C 

det II fji II # 0, 
af (hi, a) 

fji = aui (i. i = 1, . . . , II) (2.2) 

for the point aED of common location. Otherwise, there exists at least 

one system of functions 

P(a), * + -9 5” (4 (2.3) 

not all of which are Identically zero, such that the Identity 

5j (a> au: af (hi a) = 0 @=I,...,4 

holds. 
, 
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Lemma 2.1. If all the parameters of Equation (2.1) are essential, 

then there exist an Infinite group C of transformations of K into itself 

and a group G, Isomorphic to it of transformations of D into itself, such 
that the extended group G + G. preserves Equation (2.1); group G, is 

transitive, while group G is multiply transitive any number of times. 

Proof. Let us denote by 

Xi=Zi+Ai (i = 1, . . ., 4 

respectively, the infinitesimal operators in groups G, G. and G+ (I. . In 
order to obtain the Infinite Lie algebra 0 of group G, obviously, it is 
sufficient to choose as 5, (8) any base In a space of sufficiently wide 
class of functions. Let such a base be chosen in the class of analytic 
functions. Because of the linear Independence of the functions 5,(z), for 
every finite k the rank of the matrix 

El (u’) . . . El (u”) 
Ez (u’) * * . Ez (uk) 
. . . . . . . . . . 

equals k , whence follows the k-fold transitivity of group G . 

The components 6.’ (a) are defined by the equalities 

af (z, 4 p,z (up&+ + Em (4 -yiy- 
i 

= 0 L 
Ii, j = 1, . . ., n 1 (2.4) 

3 z=hi(a) m=O,l,... , 

where k1 = Al(a) are the solutions of (2.1). Because of (2.2) there also 
exist unique functions f*jB satisfying the equations 

fir*! = St (@ - Kronecker symbol) 

Solving (2.4) we obtain uniquely 

(2.5) 

Because ~(=,a) = 0, It follows from (2.4) that 

X, I (2, a) = 0 

If XJ (z, a) = 0 and Xpf (z, a) = 0 by virtue of f (z, a)=O, then 

(2.6) 

(elX, + e,Xp) f (z, a) = 0 
and it Is also easy to show that 

(X,, Xs) f (2, a) = 0 (2.7) 

because of the same relations. 

Indeed, If (2.6) Is valid, then we can find a function #(~,a) and an 
Integer s such that 

Then 
Xf (z, a) = I_1 (z, a) [f (2, dlS 

(X,, Xp) f SE ((Sp - SJ y,ppfsa+SP-l i- pxat% - jQpPc4 

which, for sufficiently general constraints on ~(=,a) , also proves (2.7). 
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Consequently, the operators 
2; 

do indeed generate the Lie algebra 0 + 0, . 
From the unlaueness of solution 2.5) we can conclude that the algebras d 
and 0. are isomorphic. Relations 12.6) show that the transformaiions in 
the group G + 0. preserve Equation (2.1). From (2.5) we get 

det j/ Fp (a) II= - det 1) f*{ /I.det E,,, (hi)]/. fi af ti ‘) 
-t=l 

1 z=hy cuF 0 

for any point a ED of common location, since (2.2) holds, 
multiply transitive and at the point a 0,f common location 
cannot have multiple roots (and hence a /ar # 0 when H = 
the transitivity of group G. follows. i emma 2.1 is proved. 

(2 8) 
(m=ml ,...,m,) 

group G is 
Equation (2.1 
XV). From (2. Q ) 

Lemma 2.1 is easily generalized to the case of a system of equations. 

Let us note without proof the validity of a somewhat more general as- 

sertion: if Equation (2.1) contains p > n parameters of which n are 

essential, then there exists an infinite group c of transformations of K 

into itself, and Its homomorphic inverse Image, the group G. of transfor- 

mations of D into itself; these groups are such that the extended group 

G + C. preserves Equation (2.1), and, moreover, group C is multiply tran- 

sitive any number of times, while group G. is intransitive and admits of 

precisely p - n absolute invariants. 

To the kernel of homomorphism H there corresponds the ideal R In alge- 

bra Q, generated by p - n operators with components (2.3), and, according 

to a well-known Theorem In [ 11, (see p.22) the group G is Isomorphic with 

the factor group G./H . 

Since Lemma 1 Is valid for any choice of Infinite algebra 0 then for a 

given choice of 0 it remains valid also for every infinite subalgebra 

G’ C G and, consequently, there corresponds to It the finite subgroup 

G’ c G if such exlsc . 

Let us sharpen the definition given in Section 1 of the class CI of the 

properties being Investigated of the roots of Equation (2.1). Let us con- 

sider all possible systems of curves in the z-plane 

q (z, y) = 0 (i = 1,. . . , I) (2.9) 

Let one of these systems be such that there exists such an infinite col- 

lection of mutually conjugate harmonic functions c(x,y), n(x,y) that by 

virtue of @I = 0 
YQ zz E (z, y) f$ + q (z, y) ,f$ = 0 (2.10) 

The class 0 consists of the properties of the roots of Equation (2.1) 

which preserve their distribution between regions of the z-plane bounded by 

any system of curves (2.9), including distribution between the curves them- 

selves and their arcs*. 

* Translator’s Note: There would be many possible translations depending 
on which inflection was Incorrect. It Is hoped the Intended interpretation 
Is given here. 
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In Section 3 it will be proved that class R is not empty. 

From this definition it automatically follows.that if @Gas then there 

exists an infinite subgronp G' C G' preserving property ", . 

In a certain sence the properties in class 0 are "locational properties': 
It is easy to imagine, however, properties of a more complex nature which 
are of interest in application. These are properties which are expressed 
in the form Of certain relations between the real and imaginary parts of the 
roots of the equation. For example, such a property IS that of the speci- 
fled alternations of real and pairs of complex-conjugate roots. In this 
case the transformations in group G themselve; should be dependent on the 
location of the roots In the z-plane, i.e. on . 

In the considered example let x1 + ty,, .x1 - t~/~ and .x2 be some roots 
of Equation (2.1). 
413~ Imf(z, a). 

Let us introduce the notationsql s Q--Q, $2 ~Reffz, a), 

Transformations of the a-plane will not disturb the nature of the root 
alternations if we require the fulfillment of the condition Q, = 0 by 
virtue of JI1 = JiZ = $3 = 0 . 

This requirement isolates from G an infinite subgroup which preserves 
root alternations. It is not difficult to construct this subgroup. 

Lemma 2.2. If a certain property WE a of the roots of Equation 

(2.1) is satisfied at a given fixed point a", then it is also satisfied in 

the whole intransitivity region k? 3 a0 of the subgroup G',' C G, preserving 
UJ. 

Proof. From (2.2) there follows a one-to-one correspondence between 
Xi and a . Because of (2.4)this correspondence is preserved also for 
A"- Xi, a’+ a, obtained from X2 and a by means of all possible trans- 
formations in the group G + G. . Therefore, if it should turn out that 
there exists a point ~1 EM for which the corresponding A' do not possess 
property u' , then this would show that the ix-atL?formations in group C' do 
not preserve w , which contradicts the hypothesis. 

From Lemmas 2.1 and 2.2 and from the method of obtaining the equations of 

singular Invariant manifolds of transitive groups, there follows a theorem. 

Theorem 2.1. The w-equivalence regions (0 E 9) coincide with 

the intransitivity systems in G.’ , preserving w , which are n-dimensional 
and which are decomposable by hypersurfaces on which vanish all the n-th 

order minors of the vector matrix IICS.J(a)/l of group G,' . 

34 Let us consider the question of choosing @ and of the computation 

of the algebra 0. based on the choice. 

Equation (1.1) Satisfies the COnditiOn Of Lemma 2.1. Let us find the 

algebra 0 + Q, for it. Let us write 0 in the form 

2 
a 

mZS%&- (m =o, 1, 2,.. *) (3*4) 

The operators (3.1) Indeed generate the algebra since 

(Z,, Z,)= (1 - m) atm-1 

The components c.' (a) of the operators in algebra 0, are found in the 
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followhg way. In order that Equation (1.1) admit of group 0 + 0. It is 

sufficient that for every integer m there is found a polynomial of degree 

R - 1 

Pm_1 (z, 4 = ya& 
v=o 

such that the ccndition 

(3.2) 

is identically fultilfled with respect to I and a . 

By substituting the left-hand side of Equation (1.1) Into (3.2), we get 

n+m-1 

2 
h=m 

n-1 

h=o 

n+m-1 

Hence by equating to zero the alternate coefficients for various powers 

of 2 , we find 

when m < n - 1 

s?7Fh(q = 2 Qn-ka.m-v-1 (0 < h <m - 1) 
ktv =h 

Cmneh (U) = 2 &-kC%-+.l - (h - m + 1) %sm-h-1 
kitv=h 

o= 2 %+k%-v-lc (h - m + l)&+m-h-l 
ktv=h 

when m > n 

&an-h (a) = k.kzh %a-k%-v-1 (Ogh<n-f) 

0 = 2 ti&k&,+“-~ (n<hdm---) 
k+.*=h 

o= 2 %-kam+1 -(h- m -!- 1) %tm-h-1 
ki-v =h 

(m<hgn--i) 

(m<h\<n+m-11 

It Is not difficult to verify that for arbitrary m the corresponding 

systems give unique solutions for C,’ (a) In the form of polynomials In a. 

The very same result is obtained by considering, the V$et formula 

cp, EE a, + (hl + . . * + A*) = 0, . . . , ‘p, s an -j- (- l)?‘+%’ . . . A” 

and by taking into account that because ‘p1 = qJPa = . . . = 9p, = 0 

&qp= 0 

Thus, because qol = . . . - y, = 0 we get 
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The collection of terms on the left-hand sides, depending on i1, by 

virtue of the theorem of symmetric polynomials, rationally is expressed in 

terms of basic symmetric polynomials, I.e. in terms of ~,,...,a, . 

Actually, it Is not necessary to compute the functions c:(a) by the 
cited formulas for large values of m ; besides the operators A,, A,, A, 
corresponding to the bilinear group of transformations of z , it suffices 
only to find A3 . After this, the remaining operators A may be computed 
by using the commutations of ,4, smith A3 (771 = 2,3, . . . ) . The components of 
A3 may be determined from Formulas 

5; (4 =k+ &n,ka2-v - b - i - 2) az+j (l<j<ra-3) 

6; (4 = “2 an-ka2-v (n-2<j<n) 
k+v+j=n 

(%I = al2 - 2a2, a, = - al, a, = n) 

In many cases It Is convenient to pass from the variables a,,...,cn to 

the equivalent system of variables 

Sk = i (hi)h (k = 1, . . ..n) 
i=l 

by use of Newton’s recurrence formulas. Then, Instead of algebra 0. we 

obtain the algebra 0, isomorphic to It 

cmk (s) = i k (hi)k-’ (Ai)” = i k (hjk++l= kSk+,_, (3.3) 
i=l i=_:l 

The elements of algebra G + G, take the form 
n 

x,= , zm -&’ + =j kSk+m_l + 
k=l 

(3.4) 

By using the base of G we can construct svbalgebras which are useful 

when considering certain transcendental equations satisfying the condition 

of Lemma 2.1. The base 
a a 

cos mzaz , sm mz az (nt = 0, 1, . . .) (3.5) 

can be formally obtained’ from (3.1) by the summations 

cosmz = i (-l)k$)! g2k (mz), sin mz = 2 (- l)k (.,k A 1)! &k-l tmz) 
k=o k=O 

or by passing to a new variable In the old base. In particular, in the same 

way we can obtain also the base 

a 
pz - 

a.?’ 
(3.1;) 
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The application of bases (3-5) and (3.6) to Equation (1.1) leads to tran- 

scendental expressions for the components C?(a) of algebra p. 

The base (3.6) can be used when studying Equation 
n 

2 un_veYz = 0, a0 = 1 
va 

for obtaining the C,J(a) in the form of polynomials in a . However, the 

written equation does not essentially differ from Equation (1.1) and can be 

obtained from it by passing to the other variable z - 8, In the same way 

that the algebra of the exponential equation is obtained from the algebra 

of Equation (1.1). 

Of great Interest is the direct determination of algebra 0. from (3.5) 

for the trigonometrical equation 
n 

f (2, 4 = %-I- 2 (u~cosvz+b~sinv~) =0 (%*+%* = 1) 
VEX 

(3.7) 

By requiring the fulfillment of (3.2), where It should be assumed that 
m 

P,=f, Em (2) = sin mz, Pm-, = Us + 2 (UP C0sp.z + p, sin p) 
p=1 

we get 
m+n m-n 

1 
T C~ 

b - m) C&-m COS 02 - 2 (~-~)~~cos#z + 

0==m+1 w=m-1 
m+n 

+ 2 b- m) b,-m sin wz - y 
o=m+i o=m-1 

(m - w) b,,, sin tiz] + 

+ 50 (a, b) + i [G’rn (a, b) cos oz + c:m (a, b) sin oz3 = 
0=1 

mtn 

+ $ 2 2 WW,- b&J Cosoz + (bvcc, + a&J sin ml + 
o=z v+p=n 

n-1 

+ $ 2 2 [(a, ap + b&J cosoz+ (b,P,---~,a,) sinoz~ 
o=l,-m v-pew 

Hence, by equating to zero alternate coefficients of cos M and sincur, 

we obtain a unique solution in the form of polynomials in a and b for 

the functions C,i and C,! generating the algebra 

The computations for s,(s) = cos niz are done analogously. The number 

of roots of Equations (3.7) IS (denumerably) infinite, but we can satisfy 

the condition of Lemma 2.1 if we mutually identify all the roots of this 

equation having equal imaginary parts and having real parts differing by 
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multiples of % . 

For the system of algebraic equations 

P,” (21, . . ., Zk, a) = 0 (i=f,...,k) 

the generators & (z’, + + ., Zk); . . . ; f& (Z’, . . ., Zk) of algebra 0 can be 
taken as monomials of degree m in the variables a’, , . . ,@ . Then, the 

generators C:(a) of algebra 0. will be polynomials in a&*, . . . ,a: . 

AS can be seen Tom whathas been presented, the form of algebra & es- 
sentially depends on the choice of algebra Q . 

It Is natural to take advantage of the arbitrariness In the choice of 
so that the expressions for the components C,>(o) of algebra 0. obtained, 

@ 

would have as simple as possible form (although the reduction of these components 
to polynomials is not always possible). 

The second essential requlrement on @ is the possibility cf deriving 
from 0 an infinite subalgebra preserving the 
roots of Equation (2.1) (In particular, of (1.1 P 

roperties under study of the 
). 

4, Let us make use of the algebra 

considered in Section 3 for the study of certain properties of the roots of 

Equatio:l (1.1) . 

Group (3.1) realizes the following representation in the plane z = x+ $y. 

Let 7 be the canonic parameter of any one-parameter subgroup of G . Then, 

from the Lie equation b.#a~ = a“ follows 

By equating the real and Imaginary parts in this equation we get the 

algebra of the desired representation 

In polar coordinates p,~ 

Em (3, y) = Re zm, q, (G y) = Im .2m 

rl,,, (P, VP) = pm-l sin (m ‘- 1) q3 

Let us use the explicit expressions for y,, and r&,,, to separate out 

that lnflnite subgroup which preserves all of the properties of the roots 

of Equation (I,l) considered belbw. 

a) Reality of the roots. The number of real roots 

of Equation (1.1) remains fixed under all transformations in a certain group 

G’c G if they preserve the equation (O = 0 . Consequently, the Lie alge- 

bra of group C’ is generated by those operators (4.1) for which the con- 

dition 



281 

is satisfied by virtue of cp - 0 . 

But this is satisfied Identically for all integers m so that G’ co- 

incides with the fundamental group G’ = G . 

According to Theorem 2.1, to obtain the equation of the hypersurface 

bounding the region In which the number of real roots is constant, It is 

necessary to find the greatest divisor of all the n-th order minors of the 

matrix IIC.’ (s)ll . 

According to (3.4) this matrix has the form 

II SO 2Si . . . ns,_, 

Sl 2s, . . , ns, 

s*y -2s; : : : r&n:1 
. . , . . . . . . . 

Let us restrict our attention to the upper minor. At any rate, it con- 

tains as a factor the desired greatest divisor 

SO $1 * * . q-1 

S1 so * . . sn = 0 . . . . . . ‘ , . 

S n-1 sn . . I %n-1 

The Hankel determinant on the left-hand side of (4.2) will be an irreduc?l- 

ble pc~lynomlal and will coincide with the resultant of the system of equa- 

tions 
P, (2, 4 = 0, 

@, (z, af 
az = 0 

In space D the hypersurface (4.2) bounds a certain multicavity region. 

Each cavity is an equivalence region relative to the number of real roots. 

To separate out those cavities which correspond to given numbers of real 

roots, it Is necessary to have additional conditions. Such a condition, for 

the case when all the roots are real, is the positiveness of all the diagonal 

minors of determinant (4.2), as is well-known. To obtain these conditions 

(if a priori knowledge of them Is not assumed) it is necessary to study the 

geometry of manifold (4.:) and, for any point representative of each cavity, 

to establish to what number of real roots It corresponds. 

b) Stability of the roots. The Hurwltz conditions 

will not be violated if the x-plane is subjected to all possible transfor- 

mations which leave the Imaginary axis fixed. The corresponding Lie alge- 

bra is generated by those of operators (4.1) for which condition 
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is satisfied by virtue of the equality gr - 4~ = 0. 

Therefore, we should have 

q,, (p, Van) = p*l sin Ill’, (m - 1) 4 = 0 or m = 2k + 1 @ = 0,1, . . .) 

Thus, the desired subalgebra 4’ is generated by the system of operators 

(3.1) with an odd Index m . The matrix of subalgebra 0.’ has the form 

.% 2% . . . nsn 

ss 2% * . * %k+, 

(ranly is, : : : A.& 
. . . . . . . . . . . 

It can be verified that the upper minor of 

Into the factors 

61 $2 * . . sn SO Sl . . . Sn_l 

SS SL . . . S*+z Sl 
= 

s2 . . . s, 

. . a..... * . . . . . . . . . . . 

S2?W SW * * . SW-1 
S 
n-1 S* * . . Ssn-l 

the matrix Is decomposab le 

a11 o...o 

as a2 1. . . 0 . 

I 0’ ‘0’ *o : : : u1, 1 
The second of these factors will be the Hurwltz determinant of the highest 

order and in turn it is decomposable into two irreducible factors. Incerta3-1 
cases their structure allows us to find the Hurwitz conditions themselves in 
a simple manner. 

As an example let us consider the case of n = 4. By a test carried out 
for some fixed values of the roots located in the left-hand halfplane, we 
establish 

Ial 1 O/ 

a4 a3 a2 a, >0 

I 0 a4 a3 

Consequently, both factors on the left-hand side of this inequality can- 
not change sign. A test of the signs of these factors, carried out for the 
same val.ues of the roots, shows that both factors are positive. But 

A repetition of the test 

al 1 
- a,a12 or 

ia, 1 

a3 a2 
a3 

a3 a2 

shcws that we should have 

> wla > 0 

al 1 I i >O, a,>09 ala2 > a,>% al>% a2#>0 

a3 =2 

Such a method is applicable for any n . However, the completeness; and 
the independence of the system of inequalities t&as obtained should be 
checked.each time. The last remark also relates to the case of the study 
of other w by this method; In particular, it relates to the obtaining of 
various modifications and generalizations of the Hurwitz criterion. 



Clssslfleation of algebraic equations 283 

c) Lo.cation of the roots within the 

angle- Yfi < ‘p < Y#a%. Here p is a rational fraction, 0 C P < 1. 

Such a location of the roots is not violated by transformations which leave 

the pair of straight lines O, = fl)prr fixed. 

It Is easy verified that the corresponding Lie subalgebra consists of the 

operators (4.1) for which m = Sk/p + 1 (k/p is an integer). 

The cases p = 0 and p = 1 have already been considered in Subsections 

(a) and (b). 

d) Location of the roots in the seg- 

ment [O,ll of the real axis. !Phls property of the 

roots Is not violated by transformations which leave the real axis and the 

points x = 0 and n = 1 , fixed. The subalgebra 4’ is generated by the 

operators 
zm (2 - 1) & (m = 1, 2,. . .) 

The matix of algebra 0,’ has the form 

2sa--q 3sa--29. . .(n+l)sn+l-nsn 

3ss - 2.Q 4s4 - 3ss . ’ * (@i2lJ,,,-@$ 

4sa--3ss 556--4sg. . . (n+3)Sn+,-((n+ 

. . . . . . 9 .., . . . . . . . . . . . . 

e) Alternation of the real 

the pair of Equations 

Pn(z, a) = 0, P, (2, b) = 0 

It is obvious that the nature of the alternation of 

roots of 

the real roots of 

these equations is in no way disturbed by transformations in the fundamental 

group G . When the equations are of equal degree, the group of transfor- 

mations of parameters a, b will be the doubled group 0. f 0, . 

For example, for a pair of quadratic equations the matrix of this group 

has the form 

2 al 2 bl 
al .2aa bl 2ba 

2a, _ al= - am 2b ,-blz - b&a 
a~~ - 3alas alzag - 2~~~ b$ - 3hbp tQbab, - Zb&’ 
. . ...* . . . . . . . . . . . . . . ..a . ...* 

fj Locatien of the roots inside a hori- 

zontal or vertical strip in the r-plane. 

In the xy-plane the algebra (3.5) *realizes a group with the operators 

I?- - sin mxaidmy 
a a+ a 

cos mxuvhmy az ay’ sin mxcorhmy az 
cos mxtimy ay 



284 L,.n. Maarkhashov 

and algebra (3.6), a group with the operators 

i?WOSqi~ a +emsin?t2y-& 

Hence it is seen that the transformations in the groups corresponding to 

these algebras leave fixed, respectively, the vertical strip --3X < X\(n 

and the horizontal strip - 3d < 8~ < Z. The components C,J (a), In this 

case, are obtained as entire transcendental functions; expansions in power 

series in the parameter a may be written out for them, 

g) Sign-definiteness of quadratic forms. 

Let us consider the quadratic form 

Q, = a$%, ai j = ajt (i, i = I,..., n) 

It; is obvious that transformations in the linear group 

Zf = a,$$, det II ai,% [I # 0 (i1= 1, . . .) n) 

cannot change the parity of the form @ . 

The finite algebra 0. obtained In this case has a matrix with the elements 

(aa& / dRj)lij=&.j = aji,b,’ + aji,b,’ 

The minors of this matrix (Its rank equals @,(n+l)) have the determinant 

detl/cr,, 11 as the greatest common divisor. 

The equatlon detjla,, /I = 0 defines an irreducible manifold which is a 

bounded equivalence region relative to the parity of form Q . The Sylvester 

conditions, in particular, separate out in D the equivalence regions rela- 

tive to the property of sign-definiteness of form C . 

Note. The results of Sections 2 to 4 can be extended to the case of 
complex parameters. If o = C&Q then the transformations of parameters a, 
are effected by a group c. 41th the operators 

a 
. (Re5k(a)cos~+lm5&() a sin 9) J$ + 6 (Im ;$ (Q) ws cp - Re & (a) sin T,) q 

BIBLIOGRAPHY 

1. Pontrlagln, L.S., Nepreryvnye gruppy (Continuous Groups). 
Gostekhteoretlzdat, 1954. 

2. Chebotarev, N.G., Teorlia grupp Li (Theory of Lie Groups). 
Gostechlzdat, 1940. 

Translated by N.R.C. 


